
1Gregor v. Bochmann, University of Ottawa

ICTSS 2015
Sharjah and Dubai (UAE), November 2015

Gregor v. Bochmann

School of Electrical Engineering and Computer Science

University of Ottawa, Canada

Testing software systems
– a perspective

2Gregor v. Bochmann, University of Ottawa

Abstract
The talk will begin with a review of general testing concepts, such as white-box and black-box testing, different
realizations of oracles (including a formal behavior specification), fault models and fault coverage issues, and
testing architectures. This will set the framework for the following discussion which has two parts: (a) a
discussion of the history of the ICTSS conference and the issues discussed during the early times since around
1985, and (b) an overview of two ongoing research projects: (1) on testing implementations against partial-
order specifications, and (2) on reverse engineering of Rich Internet Applications for vulnerability testing.
The first ICTSS conference was held in Vancouver (Canada) in 1988 and was called International Workshop on
Protocol Test Systems. The main question discussed at that time was how to test a protocol implementation to
ensure that it satisfies all requirements of a given protocol specification (a form of black-box testing). The main
issues were the modeling language used for the specification, fault models, and algorithms for obtaining test
suites with given fault coverage. At the same time, standardization committees of ISO and ITU developed
guidelines for architectures for protocol testing and a language (TTCN) for specifying test cases. Later, the
scope of ICTSS was broadened to cover the testing of many other kinds of software systems.
In the second part of the talk, we will first discuss issues that arise in testing systems against a behavior
specification that defines a partial order for the interactions of the implementation. Different partial-order
specification languages will be considered. Then another ongoing research project on crawling Rich Internet
Applications (RIAs) is discussed. Through the testing of a given implementation, a model of the RIA is
developed (this is a kind of black-box testing, but without a reference specification). The purpose here is to
obtain a “complete” model of the application such that each state (i.e. each page at the user interface) of the
application can be subsequently checked for security vulnerabilities or accessibility requirements. Since the
state space of these applications is usually huge, we propose (a) different algorithms for obtaining the most
important information relatively fast, (b) concurrent exploration by multiple crawlers, and (c) some methods for
avoiding the exploration of “equivalent” and “redundant” states.

3

Which topics for this talk ?
 I was much involved in research on protocol

testing in the 1980ies and ‘90ies
 But since 2000 mainly working in other fields
 Here is a photo from IWPTS (International

Workshop on Protocol Test Systems) in Pau
(France) – 1993
 This was for me one of the high times of this

conference

Gregor v. Bochmann, University of Ottawa

4

IWPTS 1993 - Photo

Gregor v. Bochmann, University of Ottawa

5

Outline of talk
 Historical perspective

 Model-based development
 State machine testing

 An on-going project: Crawling Rich Internet
Applications (RIA)
 Testing in the software engineering process
 A testing approach to retro-engineering of RIA

in view of security testing

 Conclusions

Gregor v. Bochmann, University of Ottawa

6

Part 1: Historical perspective
 Milestones for distributed systems

development
 First computer networks (around 1972)

 First computer network standards (X.25 – 1976)

 OSI and ODP standardization (approx. 1980 – 95)
 Much interest in testing protocol implementations against standards

 Commercial systems for protocol testing
 E.g. Idacom – HP ‘s protocol tester for X.25, Frame Relay, ATM, etc.

 Public use of the Internet (since around 1995)

 Wireless communication standards, GSM, etc.

Gregor v. Bochmann, University of Ottawa

7

Standardization group on
OSI conformance testing

 Led by Dave Rayner (UK) from 1983 to 1997.
 Developed a comprehensive ISO and ITU standard

on protocol conformance testing (“guidelines”)
 General concepts and possible architectures
 TTCN language for specifying abstract test cases
 Additional information required for testing

 This standard was later used for defining
standardized test suites for other protocols, such
as GSM, Internet, etc.

Gregor v. Bochmann, University of Ottawa

8

My research areas

 At the Université de Montréal
 1972 – neural networks
 1973 – compilation and semantic attributes
 Since 1975 – protocol specification, verification
 Early ‘80ies – standardization of FDT’s

 Three FDT’s were developed: Estelle, SDL and LOTOS
 Rayner’s group did not endorse any, but developed TTCN

 Since 1982 – protocol testing
 1989 – 1997 : Industrial research chair with IDACOM-HP

 At the University of Ottawa - also other topics:

 QoS at the application level - P2P systems - optical networks -
crawling RIA’s

 Recurring themes: submodule derivation (since 1980) and protocol
derivation (since 1986)

Gregor v. Bochmann, University of Ottawa

9

International conferences
on protocol engineering

 Protocol Specification, Testing and Verification (PSTV)
 1981 – first PSTV
 1988 – first FORTE (Formal Description Techniques)
 1996 – PSTV-FORTE combined
 2009 – combined with FMOODS (Formal Methods for Open Object-Based

Distributed Systems) – now called FORTE : “Formal Techniques for
Distributed Objects, Components and Systems”

 ICTSS
 1988 – first IWPTS (International Workshop on Protocol Test Systems)

 1997 – called International Workshop on Testing Communicating Systems

 2000 – called TestCom

 2007 – combined with FATES (Formal Approaches to Software Testing,
founded 2001)

 2010 – called ICTSS (this is a more general theme, not only distributed systems)

Gregor v. Bochmann, University of Ottawa

10

Part 2: Model-based development
 Model-based development

 This is an expression much used with design or
requirements models given in UML (which was
defined around 1995)

 Model-based development was actively pursued
since the mid-1970ies for the development of
communication protocols

 Since the behavior of protocol entities can be
largely described by state machines, the models
used were often state machine models.

Gregor v. Bochmann, University of Ottawa

11

Testing methodology: There are always two issues:

 Test coverage :
 It is impossible to test the IUT for all possible behavior sequences.
 How can one select a (not too big) set of test cases that would

discover as many faults as possible among the faults that are
expected to be present in the IUT ? – This implies two questions:
 What are the expected faults (also called fault model) ?
 What set of test cases would be most effective ?

 Test result evaluation:
 After a test case has been applied to the IUT and the outputs of the

IUT have been observed, how does one determine whether the
observed behavior is conform to the specification ?

Gregor v. Bochmann, University of Ottawa

12

Traditional software testing methodology

 White-box testing : tests developed from
knowledge of the program being tested
 Test coverage:

 There is no clear fault model.
 Mutation testing is sometimes used to determine the fault coverage of a

given test suite. The mutations introduced represent the fault model.

 To define test coverage, one uses test coverage criteria
 Criteria based on program structure:

 All branches
 All paths
 Data-flow criteria, such as all Def-Use pairs

 Criteria based on input parameter variations:
 Extreme and intermediate values (this is partly related to the

structural criteria above)

Gregor v. Bochmann, University of Ottawa

13

Traditional software testing methodology

 White-box testing : tests developed from
knowledge of the program being tested
 Test result evaluation:

 One often talks about the “Oracle” that analyses the
output and determines whether a fault was detected

 The word “oracle” suggests that there is no precise
definition of the requirements on which such a
decision could be based.
 Often, the requirements are described quite informally

 Usually, the test developer includes in the test
program the analysis of the IUT output (based on his
understanding of the requirements)

Gregor v. Bochmann, University of Ottawa

14

Model-based development of protocols

 Protocol specification: a precise definition is
required to assure compatibility between different
protocol implementations. It is an abstract model
of all implementations.

 Service specification: defines the abstract
interactions of a protocol entity with the user, and
the global properties to be assured by the
communicating protocol entities.

Gregor v. Bochmann, University of Ottawa

Architectural views of
service and protocol
entities (from [], 1980)

15

V&V in protocol engineering

 Protocol verification: check that the protocol
specification (the model) implies the service specification (a
more abstract model).
 This can be done by model checking or by testing

the protocol specification (if the latter is executable)

 Conformance testing: check that a given
implementation conforms to the protocol
specification. --- Usually, one wants a test suite that can be
applied to any implementation of the protocol

 Therefore the test suite should be based on the protocol
specification (the model), not the implementation code

 This is black-box testing – nowadays often called
model-based testing

Gregor v. Bochmann, University of Ottawa

16

V&V in protocol engineering : Architectural views

communication
service

SAP SAP

underlying service

protoc.
spec.

protoc.
spec.

Site A Site B

Modeling (abstract) view

Implementation view

underlying service

impl.A impl.B

Site A Site B

local interface A local interface B
SAP SAP

Protocol verification

Conformance
Testing

17

How is protocol testing different ?

There is a precise protocol specification
 and important aspects can be described by a state

machine model

 Test coverage :
 The state machine model suggests a precise fault model:

 Output faults and transfer faults
 Test coverage can be evaluated based on the fault model.

 Some test suite development methods ensure “full” fault coverage

 Test result evaluation :
 The protocol specification serves as oracle.

 Observability and control issue
 The IUT has several interfaces
Gregor v. Bochmann, University of Ottawa

18

Observability and control issue

Gregor v. Bochmann, University of Ottawa

OSI Conformance Testing Methodology and Framework
– General Concepts (X.290)

Different testing architectures
Local
Distributed
Coordinated
Remote

test method

A synchronizable test sequence
can be executed without any test
coordination protocol (TCP)
between upper and lower tester

Upper tester (UT)
and Lower tester (LT)

19

Part 3: State machine testing
 Early 1980ies: First work on test suite design for protocol testing

based on state machine models (with my PhD student Behcet Sarikaya)

 We found 3 existing test design methods using state
machine models:
 Distinguishing sequence (not feasible for all state machines)
 Transition tour – similar to All-Branches criteria (incomplete

coverage in case of transfer faults)
 W-method - has full fault coverage guarantee under the

assumption that number of states of IUT is not larger than spec.

 Sarikaya’s contributions (journal paper 1984):
 Development of test suites based on protocol specifications
 Dealing with synchronization issues due to multiple interfaces
 Slicing of extended state machine models based on data flow

Gregor v. Bochmann, University of Ottawa

20

Characterizing the W-method

 A test suite developed by the W-method has two
phases:

1. State identification: all states of the specification are identified
in the IUT by leading the IUT into each state (possibly several times)
and applying a set W of identification sequences to check that this
state of the IUT shows the behavior foreseen by the specification.

2. Transition checking: Each transition is checked by executing it
(possibly several times), observing the output and applying the W-set
of sequences to check that the transition transfers to the right state.

 Assumption: The ITU has a reliable reset. Each test case starts with
a reset and finishes with the execution of one of the sequences in the W-
set.

Gregor v. Bochmann, University of Ottawa

21

Simple example for the W-method

 Inputs = {a, b}
 Outputs = {0,1}
 W = {<a b>, }

 distinguishes between
state 3 and (1 or 2)

 <a, b> distinguishes between
state 1 and 2

Gregor v. Bochmann, University of Ottawa

1

3

2
a / 1

a / 1

a / 1

b / 1

b / 1

b / 0

Output obtained from
different states:

input <a, b>
State 1: <1, 1> <1>
State 2: <1, 0> <1>
State 3: <1, 0> <0>

Test suite contains these sequences:
Identify initial state: <r, a, b>, <r, b>,
Identify state 2: <r, a, a, b>, <r, a, b>,
Identify state 3: <r, a, a, a, b>, <r, a, a, b>
Check transition b from state 1: <r, b, a, b>, <r, b, b>
etc. …

Note: this machine has also a Distinguishing sequence: <b, b>

22

Improving the W-method
The W-method has been improved by several authors with
the objective of obtaining shorter test suites.

 Wp method: use separate identification sets for each
state of the specification

 UIO method (unique I-O) : applicable if the
specification admits a single (unique) identification
sequence for each state

 HIS method (harmonized identification
sequences): designed for partially defined state machines
- there is a sequence for distinguishing each pair of states

Gregor v. Bochmann, University of Ottawa

23

Dealing with non-determinism

A: Trace semantics
A-1: Observably non-deterministic specification (state is
determined by observed sequence of inputs and outputs)

 Need for adaptive testing (next input may depend on previous
outputs received)

 Question: Should IUT realize all non-deterministic choices ?
 In case of a non-deterministic IUT, tests must be repeated

to explore all possible choices of the IUT.
A-2: State-nondeterminism in the specification (it may
be in different states after a given sequence of inputs and outputs)

 As above
 The oracle function becomes an algorithm with concurrent

exploration or back-tracking.
Gregor v. Bochmann, University of Ottawa

24

Dealing with non-determinism

B: Failure semantics (Here one assumes that possible
blocking behavior must be tested as well as valid execution
traces)

 Different conformance relations can be considered:
testing equivalence, reduction of non-determinism,
etc.

 Test suite development mostly without fault
coverage guarantee

 Most work in this area has been done in relation
with the LOTOS specification language.

Gregor v. Bochmann, University of Ottawa

25

Other issues
Diagnostic testing

 Not only determine whether there is a fault in the IUT, but to locate
the fault within the fault model

 Assumptions: (a) only output faults, (b) single fault, (c) multiple
faults, but with restrictions

Testing in context

Gregor v. Bochmann, University of Ottawa

• IUT is embedded and its interfaces
are not directly accessible –
context behavior is known.

• Some deviations from the
specified behavior of the IUT may
not be detectable

• Which visible behavior would imply
a fault in the IUT (reference
system) ?

• Submodule construction problem

26

Other issues (ii)
Incremental testing

 Find identification sets without
the modified transitions

 Test each modified transitions
 More complex with additional

states

Testing based on partial-
order specifications

 Each transition has several
inputs/outputs partially ordered

 Fault model based on the
partial order

 Equivalent state machine would
have much more states

Gregor v. Bochmann, University of Ottawa

27

Questions concerning practical application

 Q1: Is it important to have a fault coverage guarantee (which is based
on the assumption about the number of states of the IUT) ? – One
needs empirical evidence !!
 Is the assumption normally satisfied ?
 What is the expected fault coverage when the assumption is not

satisfied ?
 What is the expected fault coverage for other test suites of similar

length ?
 Why not simply use a readState message which will identify the

current state ? – This single sequence of one input replaces the W-set.
 Q2: Most test suites with fault coverage guarantee consist of a large

number of test cases that start with reset. – In case that the assumption
above is not satisfied, one could expect that test suites containing longer test
cases (e.g. based on a Distinguishing sequence) would have a better chance of
detecting certain faults due to additional states. – Is this true ? - empirical
evidence ??

Gregor v. Bochmann, University of Ottawa

28

Observations

 O1: State machine testing methods can be used for white-
box testing:
 If the IUT implementation has the structure of a state machine, a

test suite can be derived from this state machine (e.g. using the W-
method).

 The output of the IUT could be checked by an oracle.
 Under the assumption that the oracle is organised as a state

machine with a number of states not larger than the IUT, the
derived test suite will have full fault coverage.

Gregor v. Bochmann, University of Ottawa

29

Observations

 O2: Test coverage criteria for black-box testing:
 If the specification is written in some high-level

programming/specification language, a test suite can be developed
from this specification satisfying some given coverage criteria (like
those developed for white-box testing of programs).

 The specification could also serve as oracle.
 There is no fault coverage guarantee, but mutation testing

(mutating the specification) could be used to estimate the fault
coverage of the test suite.

 Note: In general, model-based testing must be
complemented with test cases that take the specific
structure of the implementation into account (white-box).

Gregor v. Bochmann, University of Ottawa

30

Testing extended state machines

 Fact: In most practical cases, a (simple) state machine
model is only an approximation of the desired behavior of
the IUT. Therefore one often uses extended state
machine models for representing the behavior
requirements.
 These are state machines with additional state variables and input

and output interactions that may contain parameters.
 The behavioral aspects of the extensions are defined for each

transition by:
 An enabling predicate
 An actions to be performed during the transition which determines the

parameter values of the output interaction, and may update variables.

Gregor v. Bochmann, University of Ottawa

31

Testing extended state machines (ii)

 The notation for defining these extensions is related to
programming language concepts.

 Following the observation O2 above, it is therefore natural
to use test coverage criteria (from software testing) for
testing the behavioral aspects of the state machine
extensions.

 This leads to combining state machine testing methods
with data-flow test criteria (from software testing)

 Much work has been done in this area, but things are
complex:
 There are no fault coverage guarantees, and
 Determining whether a given path is executable is undecidable

Gregor v. Bochmann, University of Ottawa

32

Part 4: Testing in the software
development process

(A) Bug finding
 through testing (there is the coverage issue)

 Implementation code is executed and tested
 Design model is executed and tested

 through model checking
 of the implementation code, or the design model
 Coverage issue is solved by considering all execution

paths – however, there may be state space explosion

Gregor v. Bochmann, University of Ottawa

33

Part 4: Testing in the software
development process

(B) Reliability evaluation
 through testing with user input sequences that

have the same probability distribution as in real
operating conditions
 These probability choices concern

 Different choices of user inputs in each given state
 Different choices of input data within the range of

possibilities – with the same value distribution as in the real
operating environment

 One needs a probabilistic model of the user behavior
 which can be obtained from observed user traces

Gregor v. Bochmann, University of Ottawa

34

Part 4: Testing in the software
development process

(C) Other usages of testing
 Regression testing
 Test-driven (agile) software development

 The requirements are given in the form of a test suite
that includes the expected output

 Retro-engineering through testing
 Application of tests to a black-box implementation for

discovering its program structure

 Security testing
 Apply specific security tests for exploring weaknesses in

specific states of the application
Gregor v. Bochmann, University of Ottawa

35

Part 4: Testing in the software
development process

(C) Other usages of testing
 . . .
 Retro-engineering through testing

 Application of tests to a black-box implementation for
discovering its program structure

 Security testing
 Apply specific security tests for exploring weaknesses in

specific states of the application

 This leads us into the last part of my
presentation

Gregor v. Bochmann, University of Ottawa

36

Part 5: Crawling Rich Internet Appl. (RIA)
 We extract a state machine model from a RIA by testing – identifying

all reachable states (pages)
 This is a research collaboration between the University of Ottawa and

IBM-Canada.
 IBM is interested in security testing

Gregor v. Bochmann, University of Ottawa

Professors : Gregor v. Bochmann and Guy-Vincent Jourdan
IBM collaborator: Dr. Iosif Viorel Onut
Postdoc: Faheem Muhammad
Students:

Khaled Ben Hafaiedh (PhD) Sara Baghbanzadeh (M)
Salman Hoosmand (PhD) Akib Mahmud (M)

Alumni:
Seyed M. Mir Taheri (PhD) Zou Di (M)
Emre Dincturk (PhD) Suryakant Choudhary (M)
Kamara Benjamin (M) Ali Moosavi (M)
Xu Xinghao (M)

37

The evolving Web

 Traditional Web
 Static web : HTML pages identified by an URL
 “deep web” : HTML pages dynamically created

by server, identified by URL with parameters

38

The evolving Web (ii)

 Web 2.0 : Rich Internet Applications
(RIA)
 pages contain executable code (e.g.

JavaScript, Silverlight, Adobe Flex...); executed
in response to user interactions or time-outs
(so-called events); script may change
displayed page (the “state” of the application
changes) – with the same URL.

 AJAX: script interacts asynchronously with the
server to update the page.

39

Example of interactions

40

Why crawling
 Objective A: find all (or all “important”) pages

 for content indexing
 for security testing (this is of interest to IBM)
 for accessibility testing (this is of interest to IBM)

 Objective B: find all links between pages
 thus building a graph model of the application

 pages (or application states) are nodes
 links (or events) are edges between nodes

 for ranking pages, e.g. Google ranking in search queries
 for automated testing and model checking of the web

application
 for assuring that all pages have been found

4141

IBM security testing tools
 Security Issues Identified with Static Analysis (white-box view)
 Security Issues Identified with Dynamic Analysis (black-box view)
 Aggregated and correlated results
 Remediation Tasks
 Security Risk Assessment

42

Crawling example

43

Difficulties with crawling RIAs
 State identification

 A state can not be identified by a URL.
 Instead, we consider that the state is identified by the current

DOM in the browser.

 Most links (events) do not contain a URL
 An event included in the DOM , normally, does not identify the

next state reached when this event is executed.
 To determine the next state, we have to execute that event.

• In traditional crawling, the event (link) contains the URL which
identifies the next state reached (without executing the link)

 Accessibility of states
 Most states are not directly accessible (no URL) – only through

“seed” URL and a sequence of events (and intermediate states)

44

Important consequence

 For a complete crawl (a crawl that ensures that all

states of the application are found), the crawler has
to execute all events in all states of the
application
 since for any of these events, we do not know,

a priory, whether its execution in the current
state will lead to a new state or not.

• Note: In the case of traditional web crawling, it is not necessary to
execute all events on all pages; it is sufficient to extract the URLs
from these events, and get the page for each URL only once.

45

A theoretical problem:
Discover the behavior of a state machine by testing

 Possible approach: Explore all transitions reachable
from the initial state.
 Assumption: Each state provides the list of valid inputs

for the transitions from this state.
 For testing each transition, start with a reset.
 After the execution of a tested transition, execute one

sequence of the W-set (and possibly repeat for other W
sequences)

 Problem (in general): We do not know the W-set.

 Solution for RIA crawling: the state is identified
by its DOM (actually, we use the hash) – like using a
readState interaction

Gregor v. Bochmann, University of Ottawa

46

Crawling Strategies

 The strategy decides what URL/event to be
explored next.

 An “efficient” strategy discovers the states
as soon as possible (our definition).

 Note: Event executions through intermediate
states and resets normally dominate the crawl
time. – We want to reduce this as much as possible

47

Examples of Crawling Strategies

 Breadth
 Depth first
 Greedy: finds shortest path through the explored

application graph to a node with a non-executed transition

 Model-Based Crawling (has been proposed by our group)

 Hypercube
 Menu Model
 Probability

47

48

Crawling example

49

Performance of crawling strategies

49

50

Component-based crawling

Gregor v. Bochmann, University of Ottawa

51

Abstract view

C3

C1

C4

C2

C5C6

52

Intrinsic Limitations

C3

C1

C4

C2

C5C6

C1C1C1 C2C2C2C2C2C2

C5C5C5C5C5C5

C4C4C4

C3C3C3

C6C6C6

k components

Each component

has component-
states

53

Idea of component-based crawling

 Partition the DOM into independent
components (types)

 Each component has a set of component
states (instances)

 Crawl all component instances of a given
component independently of other
components

54

Results – for small RIAs

55

Component-based crawling
has good scalability

But no
coverage
guarantee

56

Conclusions
 For reactive systems, state machine models can often be used to

represent important aspects of the behavior.
 There is a long history of model-based testing, especially for state

machine models.
 Test coverage considerations can be based on the IUT (white-box

testing) or on the specification (black-bock testing). How to evaluate
test coverage does not depend on this question, but on the language
used to define the behavior which is being tested :
 (a) state machine testing methods (e.g. W-method), or
 (b) coverage criteria for program behavior.
 Both approaches should be combined for testing Extended State Machine models.

 It is not clear whether the test coverage guarantees provided by state
machine testing methods are important in practice.

 Discovering the behavior of a black-box state machine by testing – is this
a new problem waiting for a solution ? – I doubt that it is practically relevant, though.
 If the machine supports a readState input, the well-known Greedy algorithm can be

used for this purpose, as we do for RIA crawling.
Gregor v. Bochmann, University of Ottawa

57

Further readings
1. Some notes on the history of protocol engineering (G. v. Bochmann, D. Rayner and C. H. West), Computer Networks journal, 54 (2010), pp 3197–

3209.
2. Formal methods in communication protocol design (G. v. Bochmann and C. A. Sunshine), (invited paper) IEEE Tr. COM-28, No. 4 (April 1980), pp.

624-631, reprinted in "Communication Protocol Modeling", edited by C. Sunshine, Artech House Publ., 1981
3. Protocol specification for OSI (G. v. Bochmann), Computer Networks and ISDN Systems 18 (April 1990), pp.167-184
4. Synchronization and specification issues in protocol testing (B. Sarikaya and G. v. Bochmann), IEEE Trans. on Comm., COM-32, No.4 (April 1984),

pp. 389-395.
5. Generating synchronizable test sequences based on finite state machines with distributed ports (Luo, G., Dssouli, R., Bochmann, G.v.,

Ventakaram, P., Ghedamsi, A.:), in Proceedings of the IFIP Sixth International Workshop on Protocol Test Systems, Pau, France, September 1993, pp. 53–68
(1993)

6. Test selection based on finite state models (S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou and A. Ghedamsi), IEEE Transactions on Software
Engineering, Vol.17, no.6, June 1991, pp. 591-603

7. Principles and methods of testing finite state machines – a survey (Lee, D., Yannakakis, M.), Proceedings of the IEEE 84(8), 1089–1123 (1996)
8. FSM-based incremental conformance testing methods (K. El-Fakih, N. Yevtushenko and G. v. Bochmann), IEEE Trans. on SE, Vol. 30, 7 (July 2004),

pp. 425-436.
9. Automatic executable test case generation for extended finite state machine protocols (C. Bourhfir, R. Dssouli, E. Aboulhamid, N. Rico), Proc.

10th International Workshop on Testing of Communicating Systems, 1997, Cheju Island, Korea, pp. 75-90.
10. Test generation with inputs, outputs, and quiescence (G. Tretmans), in Tools and Algorithms for Construction and Analysis of Systems, Second

International Workshop, TACAS ’96. Springer-Verlag, 1996, pp. 127–146.
11. Testing systems specified as partial-order input/output automata (G. v. Bochmann, S. Haar, C. Jard and G. V. Jourdan), Proc. IFIP Testcom/FATES Workshop, Tokyo,

June 2008, LNCS.
12. Fault models for testing in context (A. Petrenko, N. Yevtushenko and G. v. Bochmann), in Proc. IFIP symposium FORTE-PSTV'96, Formal Description Techniques IX, R.

Gotzhein and J. Bredereke, Chapman and Hall, 1996, pp. 163-178.
13. Fault diagnosis in extended finite state machines (K. El-Fakih, S. Prokopenko, N. Yevtushenko and G. v. Bochmann), Proc. TestCom 2003 - the IFIP 15th International

Conference on Testing of Communicating Systems, May 2003 in Sophia Antipolis, France, LNCS 2644, Springer Verlag, pp. 197-210.
14. Multiple fault diagnostics for finite state machines (A. Ghedamsi, G. v. Bochmann and R. Dssouli), Proc. IEEE INFOCOM'93, San Francisco, USA, March 93

15. Improved Usage Model for Web Applications Reliability Testing (B. Wan, G. v. Bochmann and G. V. Jourdan), Proc. 23th IFIP Int. Conf. on Testing
Software and Systems (ICTSS'11), Paris, Nov . 2011

16. Using logic to solve the submodule construction problem (G. v. Bochmann), Journal on Discrete Event Dynamic Systems, Springer, January 2012, pp.
1 - 13.

17. On the realizability of collaborative services (H. N. Castejòn, G. v. Bochmann and R. Braek), Journal of Software and Systems Modeling, Vol. 10 (12
October 2011), pp. 1-21.

18. Model-Based Rich Internet Applications Crawling: "Menu" and "Probability" Models (Choudhary, S., Dincturk, E., Mirtaheri, S., Bochmann, G. v.,
Jourdan, G.-V., and Onut, V.), Journal of Web Engineering, 13(3&4), pp. 243 – 262, 2014

Gregor v. Bochmann, University of Ottawa

58Gregor v. Bochmann, University of Ottawa

Thanks !

Any questions
or comments ??

For copy of slides, see

http://www.site.uottawa.ca/~bochmann/talks/testing.ppt

